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ABSTRACT
Coarse graining enables the investigation of molecular dynamics for larger systems and at longer timescales than is possible at an atomic
resolution. However, a coarse graining model must be formulated such that the conclusions we draw from it are consistent with the conclu-
sions we would draw from a model at a finer level of detail. It has been proved that a force matching scheme defines a thermodynamically
consistent coarse-grained model for an atomistic system in the variational limit. Wang et al. [ACS Cent. Sci. 5, 755 (2019)] demonstrated
that the existence of such a variational limit enables the use of a supervised machine learning framework to generate a coarse-grained
force field, which can then be used for simulation in the coarse-grained space. Their framework, however, requires the manual input of
molecular features to machine learn the force field. In the present contribution, we build upon the advance of Wang et al. and introduce
a hybrid architecture for the machine learning of coarse-grained force fields that learn their own features via a subnetwork that leverages
continuous filter convolutions on a graph neural network architecture. We demonstrate that this framework succeeds at reproducing the
thermodynamics for small biomolecular systems. Since the learned molecular representations are inherently transferable, the architecture
presented here sets the stage for the development of machine-learned, coarse-grained force fields that are transferable across molecular
systems.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0026133., s

I. INTRODUCTION

Technologies facilitating molecular dynamics (MD) simula-
tions, such as distributed computing1–3 and bespoke hardware,4

have made great strides in terms of the time- and length-scales acces-
sible in silico. However, even the longest protein simulations still fail
to reach total times exceeding milliseconds, and dedicated analysis
methods are required to infer dynamics at longer timescales.5,6 In
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the context of such limitations at full atomistic resolution, coarse
graining provides a crucial methodology to more efficiently simu-
late and analyze biomolecular systems. In addition to the practical
advantages that arise from more efficient sampling, coarse grain-
ing can also elucidate the physical components that play key roles
in molecular processes.

Coarse graining is especially useful for analyzing structures and
processes that reach beyond the length and timescales accessible
to all-atom MD. Important examples include protein folding, pro-
tein structure prediction, and protein interactions.7 Some of the
most-used coarse-grained models for such studies are structure-
based models,8 MARTINI,9,10 CABS,11 AWSEM,12 and Rosetta.13

These models differ with respect to their potential energy function,
parameterization approaches, and resolution, which, in combina-
tion, determine their efficiency, accuracy, and transferability. In the
past decade, coarse-grained models have become increasingly pow-
erful due to an unprecedented wealth of experimental reference data
and computational capabilities. In this context, the development of
more realistic architectures and modeling approaches is of prime
importance.

In the field of computer science, advances in hardware and
autodifferentiation software have enabled enormous progress in
machine learning algorithms, including at the intersection of com-
putation and the physical sciences.14,15 Crucial to the use of neural
networks in the physical sciences is a consideration for the form
the training data takes before it is input into the network. One
strategy for representing molecules mathematically is through the
use of graphs, whose nodes and edges intuitively correspond to
atoms and bonds of (or interatomic distances within) a molecule,
respectively. By performing multiple convolution operations on a
graph, each node can influence other increasingly distant nodes.
The use of graph neural networks16,17 in the molecular sciences is
therefore a promising direction in a variety of applications, and
graph convolutional architectures have been used to predict molec-
ular18–21 and material22 properties as well as atomic energies23,24 and
forces.25

In this work, we combine the use of graph representations
of molecules with a supervised neural network architecture in the
coarse graining context. We consider coarse graining to be the pro-
cess of reducing structural degrees of freedom to facilitate more
efficient simulation with specific goals in mind (e.g., reproduc-
ing system thermodynamics). Coarse graining can be implemented
with a “top down” or “bottom up” approach, although other cat-
egories can be determined and strategies can be combined.26 In
a “top down” scheme, coarse graining frameworks are explicitly
designed to reproduce certain macroscale emergent properties.26 In
a “bottom up” framework, which we consider here, implementations
focus instead on reproducing specific features from a more detailed
model.

The latter involves (i) a mapping from the entities in a fine-
grained (e.g., atomistic) representation to a smaller set of interaction
sites, often called “beads,” and (ii) a physical model (i.e., Hamil-
tonian function) for the coarse-grained system comprising those
beads. Good choices for the mapping and model will lead to more
efficient simulation while preserving the biophysical properties of
interest to the researcher. Modern machine learning techniques
have been recently employed to learn both the mapping27,28 and the
model25,29–32 components of bottom up coarse graining.

In the present contribution, we focus on the coarse graining
model and employ a bottom up “force matching” scheme formulated
as a supervised machine learning problem to reproduce the thermo-
dynamics of small biomolecular systems. Particularly, we modify the
architecture of the recently introduced CGnet framework31 such that
the molecular features it requires are learned via graph convolutional
neural networks instead of hand-selected as in the original formula-
tion. By leveraging the inherently transferable SchNet scheme24,33 to
learn features, we render the entire CGnet framework transferable
across molecular systems.

Our goal in this paper is to present the theory underlying
CGSchNet—our new transferable coarse graining architecture—and
demonstrate its success on learning the thermodynamics of individ-
ual biomolecular systems. We find that our new protocol produces
more accurate free energy surfaces in comparison to the use of hand-
selected features, is more robust to hyperparameter choices, and
requires less regularization. Presented alongside a machine learning
software package that implements the methods introduced, the cur-
rent contribution sets out a framework for the machine learning of
transferable, coarse-grained molecular force fields and demonstrates
its application to a small peptide system and the miniprotein chig-
nolin.34 The practical application of the methods described herein to
larger protein systems, particularly those characterized by meaning-
ful tertiary structure, remains an open challenge that will be explored
in the future work.

II. THEORY
Force matching was pioneered in the atomistic setting in which

forces obtained from an inexpensive calculation are matched to
forces computed at a more computationally expensive level of the-
ory (i.e., quantum) via an optimization scheme.35 The method was
later adapted by the coarse graining community; in that context,
coarse-grained representations are sought such that the forces com-
puted from the coarse-grained energy function for a given con-
figuration match the average forces on corresponding atomistic
representations.36

Because coarse graining away degrees of freedom entails that
multiple atomistic structures will correspond to the same coarse-
grained configuration, it is impossible to obtain zero error during
force matching in the coarse graining context. However, it can be
proved that the coarse graining model that matches the mean forces
yields the correct thermodynamics and that the objective is vari-
ationally bounded from below by a value that necessarily exceeds
zero.

In Sec. II, we overview the major advances that enable the
present contribution. The practically inclined reader may proceed
directly to Sec. III, where we discuss the CGnet architecture and
introduce this work’s methodological contribution: namely, the
incorporation of learnable molecular features into CGnet via the use
of continuous filter convolutions on a graph neural network (i.e.,
SchNet24,33). We will see in Sec. III that the scheme we introduce
here enables, at least in principle, a coarse graining architecture that
is transferable across system size and sequence. The practical use of
this architecture to learn a force field in a transferable context will be
addressed in the future work.
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A. Force matching

Consider an all-atom dataset of coordinates and correspond-
ing forces, which we have obtained using a high level calcula-
tion (e.g., ab initio). We denote each three-dimensional structure
ri ∈ R3N , i = 1, . . ., M, and the forces F(ri) ∈ R3N , where
N is the number of atoms in the system. Now consider a trial
energy function V̂(ri;Θ), which takes as arguments an atomistic
configuration ri and any parameters Θ. We would like to use
V̂ to predict the forces on every ri—presumably in a more effi-
cient way—by taking its negative derivative. We can write the
“force matching” problem of comparing the two sets of atomistic
forces as

L(R;Θ) = 1
3MN

M

∑

i=1
∥ F(ri)
²

“True”
forces

+∇ri V̂(ri;Θ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(Negative)
predicted

forces

∥
2, (1)

where R is the set of all M sampled atomistic configurations.
The objective (1) was introduced by Ercolessi and Adams to

analyze ab initio simulations of elemental aluminum.35 The authors
highlight the method’s need to accommodate invariant proper-
ties of the system and discuss the requirement of a variety of
geometries, physical conditions, and system identities in R if the
learned potential is to be transferable across conformation, ther-
modynamic, or chemical space, respectively. Subsequent work has
derived analytical approaches to this scheme in the context of
liquids.37,38

A decade later, Izvekov and Voth introduced the multiscale
coarse graining (MS–CG) method, a groundbreaking advance that
adapts force matching to the coarse graining context.36,39 The MS–
CG framework involves two steps: first, atoms are aggregated into
“interaction sites” according to a linear mapping from N atoms to n
interaction sites (henceforth “beads”),

xi = Ξri ∈ R3n, (2)

where xi is the coarse-grained representation with n < N beads and
the matrix Ξ ∈ R3n×3N effectively performs a clustering from the
original atoms to the beads. Then, force matching is performed
between a transformation of the atomistic forces and a set of pre-
dicted coarse-grained forces. This procedure thereby creates a “mul-
tiscale” link between the all-atom and coarse-grained representa-
tions.36

Consider a coarse-grained energy function U(x; Θ). Let us say
that we have a set of M coarse-grained configurations that we have
obtained by applying (2) to every configuration ri ∈ R. To calcu-
late the forces on the beads, we then take the negative derivative
of U with respect to the reduced coordinates; in other words, we
evaluate

−∇U(Ξri;Θ) = −∇xiU(xi;Θ) ∈ R
3n

for each configuration i. From here, we have all the ingredients to
write down the adaptation of (1) to the MS–CG method,

L(R;Θ) = 1
3Mn

M

∑

i=1
∥ ΞFF(ri)
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

Atomistic forces
mapped to

coarse-grained
space

+∇U(Ξri;Θ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(Negative) forces
predicted from
coarse-grained

model

∥
2, (3)

where ΞFF is the instantaneous coarse-grained force (also called the
local mean force); that is, the projection of the atomistic force into the
coarse-grained space. A general expression for the force projection40

is ΞF = (ΞΞ⊺)−1Ξ. Other choices for the mapping ΞF are possible
and used for coarse graining.41

In principle, the coarse-grained energy U(x) that is exactly ther-
modynamically consistent with the atomistic energy V(r) can be
expressed analytically as

U(x) = −kBT ln pCG
(x) + Constant, (4)

where kB is Boltzmann’s constant and T is the absolute temperature.
The function pCG is the marginal probability density,

pCG
(x′) =

∫R exp(−V(r)
kBT
)δ(x′ − Ξr)dr

∫R exp(−V(r)
kBT
)dr

, (5)

where R is the set of all possible atomistic configurations. Since we
are concerned with all theoretically accessible structures and (thus)
employ an integral formulation, we have dropped the subscripts i
with the understanding that x′ and r now refer to infinitesimally
small regions of their respective configuration spaces. x′ is distin-
guished from x to emphasize that (5) is substituted into (4) as a
function, not a number.

The coarse-grained energy function (4) is called the poten-
tial of mean force (PMF) and is an analog of the atomistic poten-
tial energy function. Via (5), it is a function of weighted aver-
ages of energies of atomistic configurations. For a given coarse-
grained structure x′, in (5), we evaluate whether every possible
r ∈ R maps to x′. We expect multiple atomistic configurations
r to map to x′ due to the reduction in degrees of freedom that
results from structural coarse graining (n.b., this means the PMF
is, in fact, a free energy, as it contains entropic information26).
In these cases, the Dirac delta function in (5) returns one, and
the contribution of that atomistic configuration to the marginal
probability distribution is a function of its Boltzmann factor. If r
does not map to x′, then the evaluation of the delta function, and
thus the contribution of that atomistic structure to the free energy
of x′, is zero. The denominator of the right-hand side of (5) is
the all-atom partition function, which serves as a normalization
factor.

To calculate the forces on our coarse-grained beads, we must
take the gradient of (4). However, since we cannot exhaustively
sample R, (5) is intractable, and we must approximate U instead.
One way to approximate U is to employ force matching—that is,
by minimizing expression (3)—as will be described in Sec. II B.
Another method, which we do not discuss in this report, is
through relative entropy,42 whose objective is related to that of force
matching.26,43
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B. Coarse graining as a supervised machine learning
problem

In 2008, Noid et al.41 formalized the notion of thermody-
namic consistency and established the conditions under which it
is guaranteed by the MS–CG approach: specifically, thermody-
namic consistency is achieved when the coarse-grained coordinates
are a linear combination of the all-atom coordinates [cf. (2)] and
that the equilibrium distribution of the coarse-grained configu-
rations is equal to the one implied by the equilibrium distribu-
tion of the atomic configurations [cf. (4)]. Noid et al. then proved
that, under certain restrictions of the coarse-grained mapping, the
coarse-grained potential that achieves thermodynamic consistency
at a given temperature is unique [up to an additive constant,
cf. (5)].41

The authors define an error functional that is (uniquely) min-
imized for the thermodynamically consistent coarse-grained force
field.41,103 This framework provides the variational principle under-
lying the MS–CG method. Consequently, a variational approach can
be used to search for the consistent coarse-grained force field.44 The
variational principle entails that we can refer to (1) and (3) as “loss
functions” because they return a scalar that assumes a minimum
value on the optimal model. In the recent reports from both Wang
et al.31 and Wang and Gómez-Bombarelli,28 this fact is leveraged
to formulate coarse graining via force matching as a supervised or
semi-supervised machine learning problem, respectively. Here, we
build upon on the supervised learning case introduced in Ref. 31 as
CGnet.

In their study, Wang et al. presented several crucial contribu-
tions.31 First, they decompose the error term implied by (3) into
three physically meaningful components; namely, bias, variance,
and noise. Second, the authors introduce CGnet: a neural network
architecture designed to minimize the loss in (3). Once a CGnet is
trained, it can be used as a force field for new data points in the
coarse-grained space while enforcing known properties of the sys-
tem such as symmetries and equivariances (see Sec. III C). Third,
Wang et al. augmented their initial framework to introduce regu-
larized CGnets.31 Regularized CGnets avoid catastrophically wrong
predictions observed in their “unregularized” counterparts by intro-
ducing the calculation of prior energy terms before training. This
adjustment means that, instead of learning the forces directly, the
neural network learns a correction to the prior terms in order to
match the atomistic forces.

Using regularized CGnets (henceforth, we assume all CGnets
are regularized) on two peptide systems, the authors demonstrated
effective learning of coarse-grained force fields that could not be
obtained with a few-body model approach.31 It is from this base-
line that we present CGSchNet, an augmentation of the CGnet
methodology.

III. METHODS
In the quantum community, supervised machine learning has

been used to predict energies on small molecules through a vari-
ety of approaches.23,33,45–59 In particular, the SchNet architecture
is based on the use of continuous filter convolutions and a graph
neutral network.17,24,33 SchNet is a scalable, transferable framework
that employs representation learning to predict the properties and

behavior of small organic molecules. In the vein of the original force
matching procedure of Ercolessi and Adams,35 SchNet has also been
used to predict forces on atomic data from a quantum mechanical
gold standard.33

In Sec. III A, we briefly overview the CGnet scheme upon which
we base the method introduced in this work. Then, in Sec. III B,
we describe SchNet and introduce our adaptation of SchNet to the
coarse graining problem by incorporating it into a CGnet to create
a hybrid “CGSchNet” architecture. The original implementation of
CGnet is not transferable across different systems due to its reliance
on hand-selected structural features.31 We recognized that SchNet
could be leveraged as a subcomponent of CGnet in order to learn the
features, thereby converting CGnet—i.e., force matching via super-
vised machine learning—to a transferable framework for the first
time.

A. Original CGnet architecture
For both CGnet and CGSchNet, our training data comprise

an MD simulation that has already been performed and for which
the atomistic forces have been retained or recomputed. Both the
configurations and the forces are in R3N space for N atoms. We
then determine our mapping matrix Ξ and use it to prepare our
input data (coarse-grained structures) and labels (atomistic forces
mapped to the coarse-grained space), both will be in R3n for n beads
[recall (2)].

While the mapping is permitted to be more general, in our
work, we restrict it to the special case where the matrix Ξ contains
zeroes and ones only. With this choice of mapping, the projection
of the forces in (3) becomes simply ΞF = Ξ. Our mapping thus
“slices” the original atomic configuration such that the correspond-
ing coarse-grained representation comprises a subset of the original
atoms. For example, a useful mapping might retain only protein
backbone atoms or α-carbons.

To construct a CGnet, the structural data are preprocessed
such that it is represented by features with the desired properties.
Wang et al. used a set of distances, planar angles, and torsional
angles.31 In the present work, on the other hand, instead of using
hand-selected structural features, we require only distances and
bead identities from which features are learned; this is described in
Sec. III B.

For their regularized implementation, Wang et al. used up
to two types of prior terms in CGnets.31 The first is a harmonic
prior on selected distances (i.e., bonds or pseudobonds) and angles.
The second is a repulsion prior that can be used on nonbonded
distances. Correspondingly, these priors are defined as follows
for a given feature f i calculated from the data (e.g., a particular
distance):

Uharmonic
i ( fi) =

kBT
2Var[ fi]

( fi − E[ fi])2, (6a)

Urepulsion
i ( fi) = (

σ
fi
)

c

. (6b)

The constants in (6b) can be determined through cross-validated
hyperparameter optimization as in Ref. 31. The prior energy is the
sum of each prior term for all relevant features f i. In principle, any
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scalar function of protein coordinates can be used to construct a
prior energy term.

The original CGnet uses a fully connected network to learn
corrections to the prior energy.31 Crucially, the last layer of the
network returns a scalar output. Because of this single node bot-
tleneck structure, the resulting coarse-grained force field will be
curl-free and is therefore guaranteed to conserve energy.31,50 Since
all the steps described are differentiable, we can use an autod-
ifferentiation framework such as PyTorch60 to take the deriva-
tive of the energy with respect to the original (coarse-grained)
spatial coordinates via backpropagation. This derivative corre-
sponds to the predicted forces on the coarse-grained beads in R3n,
which can then be compared to the known forces on the training
coordinates.

B. Replacing structural features with graph neural
networks

Wang et al. show that CGnets constructed upon hand-selected
structural features produce machine-learned force fields yielding
accurate free energy surfaces.31 The model architecture is found
to be somewhat sensitive to various hyperparameters and required
individual tuning for each system (see Fig. 5 in the work of
Wang et al.31). Furthermore, a new system will, in general, require
retraining because the feature size is fixed according to the system
geometry.

In the present contribution, we replace the fixed structural fea-
tures employed in the original CGnet formulation (i.e., distances,
angles, and torsions)31 with learned features computed using con-
tinuous filter convolutions on a graph neural network (SchNet24,33).
The SchNet architecture thereby becomes a subunit of CGnet with
its own, separate neural network scheme; we refer to this hybrid
architecture as CGSchNet.

The term graph neural network was introduced by Battaglia
et al.17 as a generalization for networks operating on graph struc-
tures, including, but not limited to, graph convolutional networks16

and message passing networks.20 These networks have in common
that they have a notion of n nodes V connected by edges E in a
graph structure. In each neural network layer, information is passed
between nodes and representations of the nodes and/or edges are
updated. The various types of graph neural networks differ accord-
ing to whether there are node updates, edge updates, or both, as well
as by how functions are shared across the network and how the net-
work output is generated. A fairly general formulation of a graph
neural network with node updates is as follows: each node i is asso-
ciated with an initial node representation h(0)i ; in other words, h(0)i
is a vector that represents the type or identity of the node. In each
layer of the neural network, the node representations are updated
according to

h(t+1)
i = f [(h(t)j ), (eij)], (7)

where i, j = 1, . . ., n, eij are edge features defined for all edges in
E and f is a trainable neural network function. After T such layers,
an output is generated,

o = g[(h(T)j ), (eij)]. (8)

In the present contribution, we make the following choices:

1. Graph nodes represent coarse-grained beads.
2. Because multi-body interactions are important for the coarse

graining problem, edges are defined between all beads (or all
beads within a specified cutoff radius).

3. The edge features eij are taken to be the distances between
beads, implying translational and rotational invariance of the
network output.

4. The update function f in (7) is chosen to be a continuous
convolution update as in SchNet.24

5. The entire trainable part of a CGnet31—in this case a bead-
wise multilayer perceptron/dense neural network—becomes
the output function g in (8). Because this output is beadwise,
the learnable coarse grain energy is invariant with respect to
permutations of identical beads.

6. The output o is a scalar; namely, the coarse-grained energy
before the addition of the prior energy term.

Below, we describe the SchNet updates in more detail and how
to incorporate SchNet into CGnet to create CGSchNet.

1. Learning molecular representations with SchNet
One key motivating factor for the original development of

SchNet is that, unlike the images and videos that comprise the
datasets for much of modern machine learning, molecular struc-
tures are not restricted to a regular grid. Therefore, Schütt et al.
introduced continuous-filter convolutions to analyze the structures
of small molecules with the goal of predicting energies and forces
according to a quantum mechanical gold standard.24 This devel-
opment builds upon previous work in predicting atomic properties
directly from structural coordinates.20,23,50

SchNet is a graph neural network where the nodes correspond
to particles embedded in three-dimensional space and the convo-
lutional filters depend on interparticle distances, which preserves
invariances expected in the system.17,24 While SchNet was origi-
nally used to predict quantum-chemical energies from atomistic
representations of small molecules, here, we employ it to learn a
feature representation that replaces the hand-selected features in a
CGnet for the purpose of predicting the coarse-grained energy on
the coarse-grained bead coordinates xi.

As in other graph neural networks, SchNet learns feature vec-
tors on the nodes (here, coarse-grained beads). The initial node
features at the input are called node or bead embeddings h(0)i ,
which are given by trainable, shared vectors with dh dimensions
(“Embeddings” in Fig. 1),

h(0)i = ak(i). (9)

Here, k(i) is a lookup table that maps the bead index i to its type k.
In the present applications, we use nuclear charges (capped alanine)
or amino acid identities (chignolin) as bead types. The bead embed-
dings are shared among beads of the same type and are optimized
during training. Crucially, this entails that SchNet learns a molec-
ular representation, which avoids the common paradigm of fixed,
heuristic feature representations.

Next, we describe how bead representations are updated
(“Interaction block” and “cfconf” in Fig. 1). In our current architec-
ture, these updates are implemented as in the original SchNet unless
noted otherwise (see Refs. 24 and 33 for details).
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FIG. 1. CGSchNet architecture.

In each interaction layer, we perform a continuous convolution
between beads. For this, the inter-bead distances |xj − xi| are featur-
ized using radial basis functions e, e.g., one-dimensional Gaussians
centered at different distances. These featurized distances serve as
the input to a filter-generating neural network w that maps the fea-
turized distance input e(|xj − xi|) to a dh-dimensional filter. This
filter is applied to the bead representations hi as follows (“cfconf”
in Fig. 1):

z(t)i =∑
j
w(t)[e(∣xj − xi∣)] ⋅ b(t)(hti). (10)

Here, w and b are trainable functions and ⋅ is element-wise multi-
plication. As in the original SchNet implementation,24 w is a dense
neural network and b is a beadwise linear layer. The sum in (10) is
taken over every bead j within the neighborhood of bead i, which can
be all other beads in the system or a subset thereof if a finite neigh-
borhood is specified. Even when interactions are limited to particles
within a cutoff radius, a sequence of multiple interaction layers will
eventually allow all particles to be interacting and therefore be able
to express complex multi-body interactions.

In each layer, the bead representations are updated in inter-
action blocks, each of which comprises a residual update of the
bead representation via a nonlinear function of the continuous
convolution outputs z(t)i (“interaction block” in Fig. 1),

h(t+1)
i = h(t)i + g(t)(z(t)i ). (11)

The residual update step is an “additive refinement” that prevents
gradient annihilation in deep networks.61 As described by Schütt et
al.,24,33 the trainable function g involves beadwise linear layers and a
nonlinearity. Instead of the softplus nonlinearity used in the original
SchNet,24 here, we use the hyperbolic tangent.

Following the last interaction layer, we must choose an out-
put function (8). As in the original SchNet implementation, the
output of the final SchNet interaction block is input into a bead-
wise CGnet multilayer perceptron/dense network. An important
feature of transferability is permutation invariance of beads with

identical type. In the context of coarse graining, this means the
contribution of a bead to the coarse-grained energy should depend
on its location in the molecular graph, but not at the index this
bead is positioned in the input. SchNet layers are permutation-
equivariant, i.e., any exchange of the input representations h(0)i
will correspond to the same exchange of the learned representa-
tions h(T)i . In order to obtain permutation-invariant energies (as in
the original SchNet publications24,33), the beadwise output CGnet
network contracts down to a scalar energy prediction that is then
summed over all beads to yield the total learnable part of the coarse-
grained energy. It is important to note that the models used in
this study employ priors that are not permutation invariant, and
so, the non-learnable part of the coarse-grained energy (i.e., the
prior terms) breaks permutation invariance in the model overall.
The development of permutation invariant priors is left for future
work.

In the present paper, we do not use CGSchNet in a trans-
ferable manner, rather demonstrate its capabilities when trained
on individual molecular systems as a foundation for future work.
For this reason, here we use a (regularized) beadwise CGnet as
the output function; i.e., a beadwise multilayer perceptron/dense
neural network at whose output the learned part of the coarse-
grained energy is predicted. In doing so, the SchNet interaction
layers learn the input representation for a beadwise CGnet, and
the beadwise CGnet “fine-tunes” the bead energies predicted by
SchNet.

2. CGSchNet: A transferable architecture
for coarse graining

CGnet as originally presented is incapable of learning a trans-
ferable coarse-grained force field due to its reliance upon system-
specific structural features.31 Since SchNet is inherently a transfer-
able framework, learning CGnet features using SchNet enables the
transferability of the entire CGnet architecture across molecular sys-
tems. Here, we present the advance of incorporating SchNet24,33 into
CGnet to replace hand-selected features with machine-learned ones.
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In CGSchNet, instead of predetermined structural features—
i.e., distances, angles, and torsions—a SchNet is used instead,
enabling the model to learn the representation itself (see Fig. 1).
By replacing fixed-size geometric features with SchNet, we obtain
a more flexible representation that both scales better with
system size and is amenable to a transferable architecture.33

While angles and torsions may still be included in the prior
energy terms, they are no longer propagated through any neural
networks.

The use of SchNet requires us to provide not only struc-
tural coordinates but also a type for every bead. In the original
(i.e., non-coarse graining) implementation for systems at atomic res-
olution, the types are atomic numbers.23,24,33 In the new context
presented here (i.e., leveraging SchNet for coarse graining), we may
specify coarse-grained bead types—effectively, chemical environ-
ments; however, we deem appropriate for the system under study;
for example, amino acid identities may be used.

One can view the typing requirement of the SchNet architec-
ture as the mechanism for incorporating physical or chemical intu-
ition about the system into the model, as opposed to fixed structural
features. The benefit of the SchNet choice is that it enables an archi-
tecture that is transferable across size and sequence space because a
set of embeddings can apply to multiple systems with the same com-
ponents (e.g., atoms as in SchNet24 or amino acid types in proteins),
whereas hand-selected structural features are not transferable across
different systems.

Finally, we note that we train CGSchNet with the coarse-
grained force matching loss (3), which compares our predicted
forces to the known forces from the training set. Unlike in the orig-
inal SchNet formulation,24 we cannot straightforwardly incorpo-
rate an additional “energy matching” term into the coarse graining
framework. This is because we do not have labels for the coarse-
grained free energies: these energies are defined by an integral over
all microscopic configurations associated with the same coarse-
grained configuration [cf. (4)], and this integral cannot be solved
exactly.

C. Coarse-grained simulations
A trained CGSchNet can be used as a force field to simulate the

system in the coarse-grained space. Specifically, Langevin dynam-
ics62,63 are employed to propagate coarse-grained coordinates xt
forward in time according to

∂2xt
∂t2 = −M

−1
∇U(xt) − γ

∂xt
∂t

+
√

2kbTγM
− 1

2 W(t), (12)

where the diagonal matrix M contains the bead masses, γ is a colli-
sion rate with units ps−1, and W(t) is a stationary Gaussian process
with ⟨W(t)⟩ = 0 and ⟨W(t)W(t′)⟩ = δ(t − t′), where ⟨⋅⟩ is the mean.
In practice, we integrate (12) using a “BAOAB” Langevin integra-
tor,64 and the integral of W(t) is a Wiener process. A special case of
Langevin dynamics is the so-called “overdamped” Langevin dynam-
ics, also referred to as Brownian dynamics. Overdamped Langevin
dynamics lack inertia. After setting the acceleration to zero, dividing
both sides by γ and rearranging terms, in the overdamped case, (12)
becomes

∂xt
∂t
= −

D
kBT
∇U(xt) + D

1
2
√

2W(t), (13)

where the diffusion matrix D ≡ M−1kBT/γ. Although D contains a
notion of mass, we note that propagating coarse-grained dynamics
via (13) does not actually require bead masses, since the product Mγ
can be considered without separating its factors. Wang et al.31 used
exclusively (13) with the Euler method to simulate dynamics from
CGnets, with a constant diffusion matrix proportional to the identity
matrix. In both formulations, the noise term is intended to indirectly
model collisions—e.g., from and among solvent particles—that are
not present in the coarse-grained coordinate space. Since Langevin
dynamics depend only on the coordinates (and, unless overdamped,
velocities) of the previous time step, these simulations can easily be
run in parallel from a set of initial coordinates. The resulting coarse-
grained simulation dataset can then be used for further analysis, as
will be shown in Sec. IV.

IV. RESULTS
A. Capped alanine

Capped alanine—often referred to as alanine dipeptide for
its two peptide bonds—is a common benchmark for MD meth-
ods development because the heavy-atom dynamics of the cen-
tral alanine are completely described by the dihedral (torsional)
angles ϕ and ψ (see Fig. 2). We performed a single 1-μs all-atom,
explicit solvent MD simulation for capped alanine and saved the
forces to use for CGSchNet training (see Ref. 31 and Sec. A of
the supplementary material). We can visualize the occupancies
of backbone angle conformations by creating a histogram of the
data on ϕ × ψ space and visualizing the populations of the his-
togram bins. This is called a Ramachandran map and is depicted in
Fig. 4(a) for the atomistic simulation using a 60 × 60 regular spatial
discretization.

As an initial benchmark of the CGSchNet method, we aim to
learn a force field for a coarse-grained representation of capped ala-
nine such that we can reproduce its heavy-atom dynamics using a
trained CGSchNet instead of a more expensive explicit solvent all-
atom MD simulation. For our coarse-grained mapping, we select
the backbone heavy atoms C–[N–Cα–C]Ala–N as well as the alanine
Cβ for a total of six beads.65 We use atomic numbers for the bead
embeddings as in the original SchNet formulation.24 A CGSchNet

FIG. 2. Capped alanine in water. The six shaded atoms are the ones preserved
in the coarse-grained representation. The ϕ and ψ dihedral angles completely
describe the central alanine’s heavy-atom dynamics.
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is trained on the coordinates and forces of the all-atom simulation
depicted in Fig. 4(a). The learning procedure involves a hyperpa-
rameter selection routine and the training of multiple models under
fivefold cross-validation for each hyperparameter set (see Sec. B of
the supplementary material).

Once a final architecture has been selected, the trained model
can serve as a force field in the coarse-grained space, i.e., by predict-
ing the forces on a set of input coarse-grained coordinates. Along
with an integrator, predicted forces can be used to propagate coarse-
grained coordinates forward in time (recall Sec. III C). This pro-
cedure (i.e., force prediction with CGSchNet followed by propaga-
tion with an integrator) is iterated until a simulation dataset of the
desired duration has been obtained. Since we employ fivefold cross-
validation during the model training procedure, we have five trained
CGSchNet models with a common architecture at hand. To per-
form our coarse-grained simulation, we simultaneously predict the
forces on each set of input coordinates from all five trained networks,
and the mean force vector is used to propagate Langevin dynamics
according to (12).

To facilitate sampling, 100 coarse-grained simulations of length
200 ns each are performed in parallel from various starting posi-
tions in Ramachandran space (see Sec. C and Fig. S3 of the
supplementary material). The time series of the ϕ and ψ values
for two of the trajectories that feature transitions among the major
basins are plotted in Fig. 3. The same trajectories are also overlaid on
the two-dimensional energy surface in Fig. S4 of the supplementary
material.

Free energy surfaces resulting from the coarse-grained simu-
lation dataset are presented in Fig. 4(b). We can see qualitatively
that the two-dimensional free energy surface from the CGSchNet
simulation captures the same basins as the surface calculated from
the baseline all-atom simulation. In the one-dimensional free energy
surfaces, we see that the barriers are well-approximated by the
CGSchNet simulation data.

FIG. 3. Two 100-ns trajectories simulated using a CGSchNet trained on atomistic
data of capped alanine. The orange and magenta lines represent the value of the
dihedral angles ϕ and ψ, respectively, over the course of each simulation. Rela-
tively steep changes in the y-direction indicate transitions among basins; one can
see that both trajectories feature multiple transitions in both reaction coordinates.
A moving average of 250 simulation frames is used to smooth the darker curves.

To calibrate our understanding of the CGSchNet simulation
dataset’s relationship to the baseline atomistic simulation dataset, we
create a set of new systems by perturbing the Cartesian coordinates
of the latter with noise distributed as N(0, σ2

) for σ ∈ {0, 0.01, 0.02,
. . ., 0.30} Å. From the perturbed Cartesian coordinates, the new ϕ
and ψ dihedrals are calculated and assigned to the same 60 × 60
regularly spaced bins in Ramachandran space. Examples of the per-
turbed free energy surfaces are shown in Figs. 4(c)–4(e) for σ = 0.1 Å,
0.2 Å, and 0.3 Å, respectively. We see that the surfaces become
smeared and the free energy barriers are reduced with increasing
noise.

This ensemble of perturbed simulation datasets enables us
to understand the CGSchNet-produced simulation in the context
of the baseline atomistic simulation. To quantify the relationship
between two distributions, we can use the Kullback–Leibler (KL)
divergence66 and a mean squared error (MSE) formulation. The KL
divergence is defined for discrete distributions as

−

m

∑

i
pi ln

qi
pi

,∀pi ≥ 0, (14)

where p and q are the “reference” and “trial” distributions, respec-
tively, and m is the number of bins in each discrete distribution. In
this case, p and q represent the normalized bin counts. The index
i returns the normalized count from the ith bin of a 60 × 60 reg-
ular discretization of ϕ × ψ space. The distribution obtained from
the baseline atomistic simulation always serves as the reference. The
mean squared error used here is

1
m′

m′

∑

i
(Pi −Qi)

2
∋ piqi > 0, (15)

where pi and qi remain the normalized bin counts and Pi and Qi
represent the corresponding discrete distributions of bin energies
calculated as Pi = kBT log pi for Boltzmann’s constant kB and abso-
lute temperature T. When no count is recorded for a bin in either
pi or qi, those bins are omitted from the mean. m′ represents the
number of bins in which piqi > 0 (i.e., both have finite energies).67 50
different trials are performed at different random seeds for the full
set of noise scales [i.e., at each noise scale for a given trial, values are
drawn from N(0, σ2

) ∈ RM×3n, where M is the length of the trajec-
tory dataset and n is the number of coarse-grained beads]. Within
each trial, at each noise scale value σ, the KL divergence and MSE
are calculated. The results are presented in the left-hand side plot of
Fig. 5.

We see in Fig. 5 that as the noise increases, both divergence
metrics also increase. The dashed lines in Fig. 5 show us that the
error on the CGSchNet simulation dataset is approximately compa-
rable to the corresponding error on the perturbed dataset with noise
scale σ = 0.1 Å [Fig. 4(c)].68 Upon qualitative comparison of the
free energy surfaces, however, the former has more visual fidelity
to the baseline surface in Fig. 4(a) than to the broader spread seen
(and expected) in the latter. We know that coarse graining can result
in increased population in transition regions that are rarely visited in
an all-atom model; this is what we observe in Fig. 4(b). As a corollary,
we do not expect coarse graining to result in the absence of states
known to exist in the baseline system.
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FIG. 4. Two- and one-dimensional free energy surfaces for five capped alanine datasets. From left to right, datasets are the baseline all-atom capped alanine simulation (a),
the coarse-grained CGSchNet simulation produced for analysis (b), and datasets generated from perturbations of the original Cartesian coordinates of the baseline dataset
drawn from noise distributed as N(0, σ2

) for σ = 0.1 Å (c), 0.2 Å (d), and 0.3 Å (e). To create each two-dimensional surface, the ϕ and ψ Ramachandran angles are calculated
from the spatial coordinates and discretized into 60 × 60 regularly spaced square bins. The bin counts are converted to free energies by taking the natural log of the counts
and multiplying by −kBT ; the color scale is the same in all five two-dimensional surfaces and darker color represents lower free energy (i.e., greater stability). To obtain the
one-dimensional ϕ and ψ landscapes, free energies are calculated for 60 regularly spaced bins along the reaction coordinate. The shaded region always represents the
baseline dataset, and the bold line represents the dataset indicated in the inset title.

B. Chignolin
The CLN025 variant of chignolin is a 10-amino acid minipro-

tein34 featuring a β-hairpin turn in its folded state (Fig. 6). Due
to its fast folding, its kinetics have been investigated in several
MD studies.69–74 Our training data are obtained from an atomistic

FIG. 5. The Kullback–Leibler divergence (left) and mean squared error (right) are
calculated between the baseline capped alanine dataset and the datasets obtained
from perturbations to the baseline simulation at noise scale values of σ ∈ {0, 0.01,
0.02, . . ., 0.30} where the former is the reference distribution and the latter is the
trial distribution. This procedure is performed 50 times with different random seeds;
both plots show the superposition of those 50 lines. The colored horizontal dashed
line shows the value of the metric when comparing the CGSchNet simulation to
the baseline, and the black vertical dashed line indicates the noise scale σ that
return the closest value for that metric. The Kullback–Leibler (KL) divergence is
computed for normalized bin counts in ϕ × ψ space, and the MSE is computed for
the energies of those bins as described in the main text.

FIG. 6. The miniprotein chignolin. The α-carbon backbone is visualized in opaque
black, and these ten atoms are the only beads preserved in the coarse-grained rep-
resentation. The atomistic system is also solvated, although the water molecules
are not shown here.
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simulation of chignolin in explicit solvent for which we stored the
forces (see Ref. 31 and Sec. A of the supplementary material). To
build our CGSchNet model, we retain only the ten α-carbons for our
coarse-grained beads. For the SchNet embeddings, we assign each
amino acid type its own environment with a separate designation for
the two terminal tyrosines. After determining hyperparameters for
our CGSchNet model, we simulate chignolin in the coarse-grained
space using Langevin dynamics (12) as in Sec. IV A. The proce-
dures for CGSchNet training and simulation are similar to those
used for capped alanine and are described in Secs. B and C of the
supplementary material.

Given our CGSchNet simulation data, we are interested not
only in performing a similar analysis to the one in Sec. IV A for
alanine dipeptide (i.e., comparison to the baseline dataset with and
without noise added) but also to simulation data obtained from a
CGnet trained according to the protocol in Ref. 31 for the same sys-
tem. PWe thus also construct a CGnet according to the parameters
selected in Ref. 31 (i.e., using fixed geometric features as described
in Sec. III A; see also Sec. B of the supplementary material). Then,
we create a simulation dataset using the protocol described in Sec.
IV A and Sec. C of the supplementary material. Finally, we employ
a similar protocol to Sec. IV A by perturbing the raw Cartesian
coordinates of the all-atom chignolin simulation dataset with noise
distributed as N(0, σ2

) for σ ∈ {0, 0.03, 0.06, . . ., 0.90} Å.
For each type of system (i.e., baseline, CGSchNet, CGnet, and

baseline with noise perturbation), we build Markov state models

FIG. 8. The Kullback–Leibler divergence (left) and mean squared error (right) are
calculated between the baseline chignolin dataset and the datasets obtained from
perturbations to the baseline simulation at noise scale values of σ ∈ {0, 0.03,
0.06, . . ., 0.90}, where the former is the reference distribution and the latter is
the trial distribution. This procedure is performed 50 times with different random
seeds; both plots show the superposition of those 50 lines. The colored horizontal
dashed lines show the values of the metric when comparing the CGSchNet (pur-
ple) and the CGnet (blue) simulations to the baseline. The black vertical dashed
line indicates the noise scale σ that returns the closest value for that metric. The
KL divergence is computed for normalized bin counts in reweighted TIC 1 × TIC 2
space, and the MSE is computed for energies, as described in the main text.

(MSMs)75 (see Refs. 83 and 84 for recent overviews). First, the
data are “featurized” from Cartesian coordinates into the set of 45
distances between pairs of α-carbons. From these distances, time-
lagged independent component analysis (TICA)85,86 is performed to

FIG. 7. Two- and one-dimensional free energy surfaces for four chignolin datasets. From left to right, datasets are the baseline chignolin simulation (a), the coarse-grained
CGSchNet simulation (b), and the coarse-grained CGnet simulation (c) and the dataset generated from the perturbation of the original Cartesian coordinates of the baseline
dataset drawn from noise distributed as N(0, σ2

) for σ = 0.3 Å (d). Each two-dimensional surface is obtained from a 120 × 120 histogram on TIC 1 × TIC 2 space with
weights determined from the MSM built for each system (see the main text). The one-dimensional surfaces are similarly obtained from 120-bin histograms on a single TIC.
For each reweighted histogram bin, the free energy is obtained by taking the natural log of the counts and multiplying by −kBT ; the color scale is the same in all four
two-dimensional surfaces and darker color represents lower free energy (i.e., greater stability). The shaded region always represents the baseline dataset and the bold line
represents the dataset indicated in the inset title.
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yield four slow reaction coordinates for the system. These four reac-
tion coordinates are clustered into 150 discrete, disjoint states using
the k-means algorithm. An MSM is then estimated from the cluster
assignments. The MSM for the baseline simulation dataset is con-
structed first; then, the other simulation datasets are projected onto
the space defined by the former. MSM essentials are presented in
Sec. D of the supplementary material from a theoretical standpoint,
and the specific protocols used for the MSM analysis in this section
are given in Sec. E of the supplementary material.

The stationary distribution of each MSM is then used to
reweight the TICA coordinates used for its own construction. His-
tograms of the first two TICA coordinates are presented in the

top row of Fig. 7 for the baseline, CGSchNet, and CGnet simula-
tion datasets as well as the baseline dataset for σ = 0.3. The first
two reweighted TICA coordinates are also individually binned into
one-dimensional free energy surfaces, which are depicted in the sec-
ond and third rows of Fig. 7. We see that the free energy barriers
along these reaction coordinates are reasonably approximated by the
CGSchNet simulation.

Figure 8 shows the same divergence metrics calculated in Fig. 5
in Sec. IV A. Again, we see that both the KL divergence and the MSE
increase monotonically with the magnitude of the noise. In this case,
we can assess the equivalent noise value for both the CGSchNet and
CGnet simulation datasets. For both divergences measured, we see

FIG. 9. Two-dimensional free energy
surfaces (a) and sample folded (b),
unfolded (c), and misfolded (d) confor-
mations from the baseline atomistic sim-
ulation of chignolin (left column) and
the CGSchNet simulation (right column).
The free energy surfaces are built from
150-state MSMs that were constructed
from the slowest two TICA coordinates in
contact distance space. The color scale
is the same for both surfaces and darker
color represents lower free energy (i.e.,
greater stability). Each set of ten sam-
pled structures corresponds to the MSM
state represented by the star on the free
energy surface of the same color (one of
the ten structures is opaque for clarity).
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that the CGSchNet simulation corresponds to a lesser value of added
noise than the CGnet simulation.

We can also obtain free energy surfaces from the MSMs con-
structed for the systems; the surfaces for the baseline and CGSchNet
simulation datasets of chignolin are presented in Fig. 9(a) on the
left and right, respectively. We see that the three major basins
observed in the atomistic data are captured by CGSchNet. These
basins represent folded, unfolded, and misfolded ensembles and are
indicated in Fig. 9(a) with blue, green, and yellow stars, respec-
tively. Each star represents one of the 150 MSM states and was
manually selected from the MSM states near the relevant basin
(see Fig. S8 of the supplementary material for a visualization of
all 150 MSM states). To verify that the protein conformations
are similar in each of the states, we sample ten structures from
each starred state per simulation dataset. The structures are visu-
alized in Figs. 9(b)–9(d), and the similarity of the structures on
the left-hand side (baseline simulation) to those on the right-hand
side (CGSchNet simulation) from corresponding MSM states is
apparent.

The analysis of the CGSchNet and CGnet simulation datasets
so far used TICA reaction coordinates that were obtained by pro-
jecting the simulation data onto coordinates defined by a TICA
model built for the baseline atomistic data (see Sec. E of the sup-
plementary material). This was done in order to compare simula-
tion results using the same reaction coordinates. We can also con-
struct TICA models from the simulation data without projection
to determine the scaling factor for the coarse-grained timescale.
For this analysis, we build two further (independent) TICA mod-
els for the CGSchNet and CGnet datasets at a lag time long enough
for the TICA timescales to have leveled off (see Fig. S9 of the
supplementary material). A 100-round bootstrapping analysis of
the longest TICA timescale from the CGSchNet simulation data
yields a time scaling factor of 2.2 with a standard deviation of 0.4.
From this time rescaling, we determine that the effective collision
rate (i.e., friction) of the coarse-grained simulations is 180 ps−1–
260 ps−1. This value is four orders of magnitudes larger than the
friction constant in the all-atom model (0.1 ps−1),31 which we expect
because we have coarse-grained out the solvent dynamics. The same
analysis for the CGnet simulation data yields a scaling factor of
2.2 ± 0.3 and a corresponding effective collision rate of 190 ps−1

–250 ps−1.
Although we use MSMs and TICA models to obtain ther-

modynamics and effective friction constants, we do not attempt
a kinetic analysis in the present work because the scope of force
matching is limited to thermodynamic consistency.36,41 The match-
ing of dynamics in addition to thermodynamics is an open chal-
lenge that has been the subject of recent work.87 Given coarse-
grained dynamics, analytical methods have been derived that
enable their rescaling to the dynamics of the system’s all-atom
counterpart.88

V. DISCUSSION
Coarse graining holds the promise of simulating larger sys-

tems at longer timescales than are currently possible at the atom-
istic level. However, mathematical frameworks must be devel-
oped in order to ensure that the results obtained from a coarse-
grained model are faithful to those that would be obtained from an

atomistic simulation or experimental measurement. Force match-
ing35,36 is one such framework that, when certain restrictions
are applied, guarantees thermodynamic consistency with atom-
istic data in the variational limit.41 Such a variational framework
enables the formulation of the force matching problem as a super-
vised machine learning task, which is presented in Ref. 31 as
CGnet.

A key limitation of the original CGnet is that it is not trans-
ferable across different systems: a new network must be trained for
each individual molecular system under study because the molec-
ular features from which it learns the force field must be cho-
sen by hand. Here, we replace manually determined features with
a learnable representation. This representation is enabled by the
use of continuous filter convolutions on a graph neutral network
(i.e., SchNet24,33). SchNet is an inherently transferable architecture
originally designed to match energies and forces to quantum calcula-
tions for small organic molecules. By leveraging SchNet in the coarse
graining context—i.e., to learn the molecular features input into a
CGnet, we render the hybrid CGnet architecture (i.e., CGSchNet)
transferable across molecular systems of different sizes and
sequences.

Our aim in the present contribution is threefold: to sum-
marize the variational framework enabling a supervised learning
approach to force matching, to provide an accompanying soft-
ware package implementing the methods discussed herein (see
the Appendix), and to demonstrate that CGSchNet produces
results on individual systems that are superior to those obtained
from bespoke features. The advances presented in this work pre-
pare us to address the ultimate challenge of machine learning
a coarse-grained force field that is transferable across molecular
systems.

In our computational experiments performed on capped ala-
nine and the miniprotein chignolin, we find that CGSchNet’s per-
formance exceeds that of CGnet in three ways. First, the free energy
surface obtained from CGSchNet simulations of chignolin is more
accurate than the free energy surface presented for the same systems
in Ref. 31. Second, CGSchNet is more robust to network hyperpa-
rameters than its predecessor. In fact, for the CGSchNet hyperpa-
rameters varied during model training (see Sec. B of the supple-
mentary material), the same selections are used for both systems
presented in Sec. IV. Third, CGSchNet employs less regularization;
particularly, it does not require the extra step of enforcing a Lips-
chitz constraint89 on its network’s weight matrices as was found to
be necessary for CGnet.31

While our current protocol has demonstrated success for a
capped monopeptide and a 10-amino acid miniprotein, adapting
the CGSchNet pipeline to produce accurate coarse-grained force
fields for larger protein systems remains an open challenge. Address-
ing this challenge may require specific sampling strategies when
obtaining training data, the incorporation of new priors that inform
tertiary structure formation, or modifications to the CGSchNet
architecture itself such as regularization. Successfully modeling the
thermodynamics of protein folding or conformational change via a
transferable, machine-learned force field would signify a major suc-
cess for the union of artificial intelligence and the computational
molecular sciences.

The method introduced herein enables us to reproduce the
thermodynamics of small protein systems using an architecture
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that is transferable across system size and sequence. However,
CGSchNet is not readily transferable across thermodynamic states.
Related work leveraging the same variational principle in a semi-
supervised learning context allows the learning of coarse-grained
representations over multiple thermodynamic states, enabling trans-
ferability across different temperatures.25,28 This method has been
demonstrated for ionic liquids for which nonequilibrium trans-
port properties are of prime interest. Finally, the reproduction
of kinetics is an open research problem, and methods for the
so-called “spectral matching” problem have recently been intro-
duced.87 Ideally, both force and spectral matching could be pur-
sued in conjunction to match both thermodynamics and kinetics
simultaneously.

Structural, bottom up coarse graining consists of two aspects:
the model resolution and the force field. Here, we assume that the
resolution is set and focus on the force field, but the choice of
an optimal model resolution is itself a significant challenge that
is interconnected to the goal of force field optimization. How to
choose a resolution for coarse graining—and the interplay of this
choice with transferable force field architectures—remains an open
question. Recent work has employed machine learning and data-
driven approaches to pursue an optimal resolution using various
objectives.27,28

Altogether, the methodology we introduce in the present con-
tribution establishes a transferable architecture for the machine
learning of coarse-grained force fields, and we expect our accom-
panying software to facilitate progress not only in that realm but
also toward the outstanding challenges of learning coarse-grained
dynamics and optimizing a model’s resolution.

SUPPLEMENTARY MATERIAL

See the supplementary material for further specifics on simula-
tion, model training, and MSM construction.
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APPENDIX: SOFTWARE
The cgnet software package is available at https://github.com/

coarse-graining/cgnet under the BSD-3-Clause license. cgnet
requires NumPy,90 SciPy,91 and PyTorch,60 and optional function-
alities further depend on pandas,92 MDTraj,93 and Scikit-learn.94

The examples are provided in Jupyter notebooks, 95 which also
require Matplotlib.96 The SchNet part of the code is inspired
by SchNetPack,97 and the Langevin dynamics simulation code is
adapted from OpenMM.98 In addition to cgnet and the pack-
ages already mentioned, visualization was aided by Seaborn99 and
visual molecular dynamics (VMD).100 Analysis was facilitated by
PyEMMA.101,102
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